Credit Risk Analysis Using a Reliability-Based Neural Network Ensemble Model

نویسندگان

  • Kin Keung Lai
  • Lean Yu
  • Shouyang Wang
  • Ligang Zhou
چکیده

Credit risk analysis is an important topic in the financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. An accurate estimation of credit risk could be transformed into a more efficient use of economic capital. In this study, we try to use a triple-phase neural network ensemble technique to design a credit risk evaluation system to discriminate good creditors from bad ones. In this model, many diverse neural network models are first created. Then an uncorrelation maximization algorithm is used to select the appropriate ensemble members. Finally, a reliability-based method is used for neural network ensemble. For further illustration, a publicly credit dataset is used to test the effectiveness of the proposed neural ensemble model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Customer’s Credit Risk Using Ensemble learning (Case study: Sepah Bank)

Banks activities are associated with different kinds of risk such as cresit risk. Considering the limited financial resources of banks to provide facilities, assessment of the ability of repayment of bank customers before granting facilities is one of the most important challenges facing the banking system of the country. Accordingly, in this research, we tried to provide a model for determinin...

متن کامل

Credit risk assessment with a multistage neural network ensemble learning approach

In this study, a multistage neural network ensemble learning model is proposed to evaluate credit risk at the measurement level. The proposed model consists of six stages. In the first stage, a bagging sampling approach is used to generate different training data subsets especially for data shortage. In the second stage, the different neural network models are created with different training su...

متن کامل

مدیریت ریسک اعتباری در نظام بانکی رویکرد مقایسه ای تحلیل پوششی داده ها و شبکه عصبی

This research has been done with the aim of identification of effective factors which influence on credit risk and designing model for estimating credit rating of the companies which have borrowed from a commercial bank in the one-year period by using Data Envelopment Analysis and neural network model and comparison of these two models . For this purpose, the necessary sample data on financial ...

متن کامل

The Comparison of Applying a Designed Model to Measure Credit Risk Between Melli and Mellat Banks

The main purpose of this paper is providing a model to calculate the credit risk of Melli bank clients and implement it at Mellat Bank. Therefore, the present study uses a multi-layered neural network method. The statistical population of this research is all real and legal clients of Melli and Mellat banks. Sampling method used in this research is a simple random sampling method. Friedman test...

متن کامل

ارائه مدل ترکیبی شبکه های عصبی با بهره گیری از یادگیری جمعی به منظور ارزیابی ریسک اعتباری

Banking is a specific industry that deals with capital and risk for making profit. Credit risk as the most important risk, is an active research domain in financial risk management studies. In this paper a hybrid model for credit risk assessment which applies ensemble learning for credit granting decisions is designed. Combining clustering and classification techniques resulted in system improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006